Archive | libreoffice RSS for this section

Easterhegg: Vimpressing LibreOffice!

Das ist alles nur geklaut und gestohlen,
nur gezogen und geraubt.
Entschuldigung, das hab ich mir erlaubt.
— die Prinzen, Alles nur geklaut

So, you might have noticed that there was no April Fools post from me this, year unlike previous years. One idea, I had was giving LibreOffice vi-key bindings — except that apparently already exists: vibreoffice. So I went looking for something else and found odpdown by Thorsten, who just started to work on LibreOffice fulltime again, and reading about it I always had the thought that it would be great to be able to run this right from your favourite editor: Vim.

And indeed: That is not hard to do. Here is a very raw video showing how to run presentations right out of vim:

Now, this is a quick hack, Linux only, requires you to have Python3 UNO-bindings installed etc. If you want to play with it: Clone the repo from github and get started. Kudos go out to Thorsten for the original odpdown on which this is piggybagging (“das ist alles nur geklaut”). So: Have fun with this — I will have to install vibreoffice now.

Following the White Rabbit

When logic and proportion have fallen sloppy dead
And the white knight is talking backwards
And the red queen’s off with her head
Remember what the dormouse said
Feed your head, feed your head

— Jefferson Airplane, White Rabbit

So, this was intended as a quick and smooth addendum to the “50 ways to fill your vector” post, bringing callgrind into the game and ensuring everyone that its instructions counts are a good proxy for walltime performance of your code. This started out as mostly as expected, when measuring the instructions counts in two scenarios:

implementation/cflags -O2 not inlined -O3 inlined
A1 2610061438 2510061428
A2 2610000025 2510000015
A3 2610000025 2510000015
B1 3150000009 2440000009
B2 3150000009 2440000009
B3 3150000009 2440000009
C1 3150000009 2440000009
C3 3300000009 2440000009

The good news here is, that this mostly faithfully reproduces some general observations on the timings from the last post on this topic, although the differences in callgrind are more pronounced in callgrind than in reality:

  • The A implementations are faster than the B and C implementations on -O2 without inlining
  • The A implementations are slower (by a smaller amount) than the B and C implementations on -O3 with inlining

The last post also suggested the expectation that all implementations could — and with a good compiler: should — have the same code and same speed when everything is inline. Apart from the A implementations still differing from the B and C ones, callgrinds instruction count suggest to actually be the case. Letting gcc compile to assembler and comparing the output, one finds:

  • Inline A1-3 compile to the same output on -Os, -O2, -O3 each. There is no difference between -O2 and -O3 for these.
  • Inline B1-3 compile to the same output on -Os, -O2, -O3 each, but they differ between optimization levels.
  • Inline C3 output differs from the others and between optimization levels.
  • Without inlinable constructors, the picture is the same, except that A3 and B3 now differ slightly from their kin as expected.

So indeed most of the implementations generate the same assembler code. However, this is quite a bit at odd with the significant differences in performance measured in the last post, e.g. B1/B2/B3 on -O2 created widely different walltimes. So time to test the assumption that running one implementation for a minute is producing reasonable statistically stable result, by doing 10 1-minute runs for each implementation and see what the standard deviation is. The following is found for walltimes (no inline constructors):

implementation/cflags -Os -O2 -O3 -O3 -march=
A1 80.6 s 78.9 s 78.9 s 79.0 s
A2 78.7 s 78.1 s 78.0 s 79.2 s
A3 80.7 s 78.9 s 78.9 s 78.9 s
B1 84.8 s 80.8 s 78.0 s 78.0 s
B2 84.8 s 86.0 s 78.0 s 78.1 s
B3 84.8 s 82.3 s 79.7 s 79.7 s
C1 84.4 s 85.4 s 78.0 s 78.0 s
C3 86.6 s 85.7 s 78.0 s 78.9 s
no inline measurements

no inline measurements

And with inlining:

implementation/cflags -Os -O2 -O3 -O3 -march=
A1 76.4 s 74.5 s 74.7 s 73.8 s
A2 75.4 s 73.7 s 73.8 s 74.5 s
A3 76.3 s 74.6 s 75.5 s 73.7 s
B1 80.6 s 77.1 s 72.7 s 73.7 s
B2 81.4 s 78.9 s 72.0 s 72.0 s
B3 80.6 s 78.9 s 72.8 s 73.7 s
C1 81.4 s 78.9 s 72.0 s 72.0 s
C3 79.7 s 80.5 s 72.9 s 77.8 s
inline measurements

inline measurements

The standard deviation for all the above values is less than 0.2 seconds. That is … interesting: For example, on -O2 without inlining, B1 and B2 generate the same assembler output, but execute with a very significant difference in hardware (5.2 s difference, or more than 25 standard deviations). So how have logic and proportion fallen sloppy dead here? If the same code is executed — admittedly from two different locations in the binary — how can that create such a significant difference in walltime performance, while not being visible at all on callgrind? A wild guess, which I have not confirmed yet, is cache locality: When not inlining constructors, those might be in CPU cache from one copy of the code in the binary, but not for the other. And by the way, it might also hint at the reasons for the -march= flag (which creates bigger code) seeming so uneffective. And it might explain, why performance is rather consistent when using inline constructors. If so, the impact of this is certainly interesting. It also suggest that allowing inlining of hotspots, like recently done with the low-level sw::Ring class, produces much more performance improvement on real hardware than the meager results measured with callgrind. And it reinforces the warning made in that post about not falling in the trap of mistaking the map for the territory: callgrind is not a “map in the scale of a mile to the mile”.

Addendum: As said in the previous post, I am still interested in such measurements on other hardware or compilers. All measurements above done with gcc 4.8.3 on Intel i5-4200U@1.6GHz.

LibreOffice around the world

Around the world, Around the world
— Daft Punk, Around the world

So, you still heard that unfounded myth that it is hard to get involved with and to start contributing to LibreOffice? Still? Even though that there are our Easy Hacks and the LibreOffice developer are a friendly bunch that will help you get started on mailing lists and on IRC? If those alone do not convince you, it might be because it is admittedly much easier to get started if you meet people face to face — like on one of our upcoming Events! Especially our Hackfests are a good way to get started. The next one will be at the University de Las Palmas de Gran Canaria were we had been guests last year already. We presented some introduction talks to the students of the university and then went on to hack on LibreOffice from fixing bugs to implementing new stuff. Here is how that looked like last year:

LibreOffice Hackfest Gran Canaria 2014

LibreOffice Hackfest Gran Canaria 2014

One thing we learned from previous Hackfests was that it is great if newcomers have a way to start working on code right away. While it is rather easy to do that as the 5 minute video on our wiki shows, it might still take some time on some notebooks. So what if you spontaneously show up at the event without a pre-build LibreOffice? Well for that, we now have — thanks to Christian Lohmaier of the Document Foundation staffremote virtual machines prepared for Hackfests, that allow you to get started right away with everything prepared — on rather beefy hardware even, that is.

If you are a student at ULPGC or live in Las Palmas or on the Canary Islands, we invite you to join us to learn how to get started. For students, this is also a very good opportunity get involved and prepare for a Google Summer of Code on LibreOffice. Furthermore, if you are a even casual contributor to LibreOffice code already and want to help out sharing and deepen knowledge on how to work on LibreOffice code, you should get in contact with the Document Foundation — while the event is already very soon now, there still might be travel reimbursal available. You will find all the details on the wiki page for the Hackfest in Las Palmas de Gran Canaria 2015.

LibreOffice Evening Hacking

LibreOffice Evening Hacking in Las Palmas 2014

On the other hand, if two weeks is too short a notice for you, but the rest of this sounds really tempting, there is already the next Hackfest planned, which will take place in Cambridge in the United Kingdom in May. We will be there with a Hackfest for the first time and invite you to join us from anywhere in Europe if you either are a LibreOffice code contributor or if you are interested in learning more on how to become one. Again, there is a wiki page with the details on the LibreOffice Hackfest in Cambridge 2015, and travel reimbursals are available. Contact us!

LibreOffice Evening Hacking

How I imagine Cambridge in May — Photo by Andrew Dunn CC-BY-SA 2.0 via Wikimedia

50 ways to fill your vector …

“The problem is all inside your head” she said to me
“The answer is easy if you take it logically”
— Paul Simon, 50 ways to leave your lover

So recently I tweaked around with these newfangled C++11 initializer lists and created an EasyHack to use them to initialize property sequences in a readable way. This caused a short exchange on the LibreOffice mailing list, which I assumed had its part in motivating Stephans interesting post “On filling a vector”. For all the points being made (also in the quick follow up on IRC), I wondered how much the theoretical “can use a move constructor” discussed etc. really meant when the C++ is translated to e.g. GENERIC, then GIMPLE, then amd64 assembler, then to the internal RISC instructions of the CPU — with multiple levels of caching in addition.

So I quickly wrote the following (thanks so much for C++11 having the nice std::chrono now).

data.hxx:

#include <vector>
struct Data {
    Data();
    Data(int a);
    int m_a;
};
void DoSomething(std::vector<Data>&);

data.cxx:

#include "data.hxx"
// noop in different compilation unit to prevent optimizing out what we want to measure
void DoSomething(std::vector<Data>&) {};
Data::Data() : m_a(4711) {};
Data::Data(int a) : m_a(a+4711) {};

main.cxx:

#include "data.hxx"
#include <iostream>
#include <vector>
#include <chrono>
#include <functional>

void A1(long count) {
    while(--count) {
        std::vector<Data> vec { Data(), Data(), Data() };
        DoSomething(vec);
    }
}

void A2(long count) {
    while(--count) {
        std::vector<Data> vec { {}, {}, {} };
        DoSomething(vec);
    }
}

void A3(long count) {
    while(--count) {
        std::vector<Data> vec { 0, 0, 0 };
        DoSomething(vec);
    }
}

void B1(long count) {
    while(--count) {
        std::vector<Data> vec;
        vec.reserve(3);
        vec.push_back(Data());
        vec.push_back(Data());
        vec.push_back(Data());
        DoSomething(vec);
    }
}

void B2(long count) {
    while(--count) {
        std::vector<Data> vec;
        vec.reserve(3);
        vec.push_back({});
        vec.push_back({});
        vec.push_back({});
        DoSomething(vec);
    }
}

void B3(long count) {
    while(--count) {
        std::vector<Data> vec;
        vec.reserve(3);
        vec.push_back(0);
        vec.push_back(0);
        vec.push_back(0);
        DoSomething(vec);
    }
}

void C1(long count) {
    while(--count) {
        std::vector<Data> vec;
        vec.reserve(3);
        vec.emplace_back(Data());
        vec.emplace_back(Data());
        vec.emplace_back(Data());
        DoSomething(vec);
    }
}

void C3(long count) {
    while(--count) {
        std::vector<Data> vec;
        vec.reserve(3);
        vec.emplace_back(0);
        vec.emplace_back(0);
        vec.emplace_back(0);
        DoSomething(vec);
    }
}

double benchmark(const char* name, std::function<void (long)> testfunc, const long count) {
    const auto start = std::chrono::system_clock::now();
    testfunc(count);
    const auto end = std::chrono::system_clock::now();
    const std::chrono::duration<double> delta = end-start;
    std::cout << count << " " << name << " iterations took " << delta.count() << " seconds." << std::endl;
    return delta.count();
}

int main(int, char**) {
    long count = 10000000;
    while(benchmark("A1", &A1, count) < 60l)
        count <<= 1;
    std::cout << "Going with " << count << " iterations." << std::endl;
    benchmark("A1", &A1, count);
    benchmark("A2", &A2, count);
    benchmark("A3", &A3, count);
    benchmark("B1", &B1, count);
    benchmark("B2", &B2, count);
    benchmark("B3", &B3, count);
    benchmark("C1", &C1, count);
    benchmark("C3", &C3, count);
    return 0;
}

Makefile:

CFLAGS?=-O2
main: main.o data.o
    g++ -o $@ $^

%.o: %.cxx data.hxx
    g++ $(CFLAGS) -std=c++11 -o $@ -c $<

Note the object here is small and trivial to copy as one would expect from objects passed around as values (as expensive to copy objects mostly can be passed around with a std::shared_ptr). So what did this measure? Here are the results:

Time for 1280000000 iterations on a Intel i5-4200U@1.6GHz (-march=core-avx2) compiled with gcc 4.8.3 without inline constructors:

implementation / CFLAGS -Os -O2 -O3 -O3 -march=…
A1 89.1 s 79.0 s 78.9 s 78.9 s
A2 89.1 s 78.1 s 78.0 s 80.5 s
A3 90.0 s 78.9 s 78.8 s 79.3 s
B1 103.6 s 97.8 s 79.0 s 78.0 s
B2 99.4 s 95.6 s 78.5 s 78.0 s
B3 107.4 s 90.9 s 79.7 s 79.9 s
C1 99.4 s 94.4 s 78.0 s 77.9 s
C3 98.9 s 100.7 s 78.1 s 81.7 s

creating a three element vector without inlined constructors
And, for comparison, following are the results, if one allows the constructors to be inlined.
Time for 1280000000 iterations on a Intel i5-4200U@1.6GHz (-march=core-avx2) compiled with gcc 4.8.3 with inline constructors:

implementation / CFLAGS -Os -O2 -O3 -O3 -march=…
A1 85.6 s 74.7 s 74.6 s 74.6 s
A2 85.3 s 74.6 s 73.7 s 74.5 s
A3 91.6 s 73.8 s 74.4 s 74.5 s
B1 93.4 s 90.2 s 72.8 s 72.0 s
B2 93.7 s 88.3 s 72.0 s 73.7 s
B3 97.6 s 88.3 s 72.8 s 72.0 s
C1 93.4 s 88.3 s 72.0 s 73.7 s
C3 96.2 s 88.3 s 71.9 s 73.7 s

creating a three element vector without inlined constructors
Some observations on these measurements:

  • -march=... is at best neutral: The measured times do not change much in general, they only even slightly improve performance in five out of 16 cases, and the two cases with the most significant change in performance (over 3%) are actually hurting the performance. So for the rest of this post, -march=... will be ignored. Sorry gentooers. ;)
  • There is no silver bullet with regard to the different implementations: A1, A2 and A3 are the faster implementations when not inlining constructors and using -Os or -O2 (the quickest A* is ~10% faster than the quickest B*/C*). However when inlining constructors and using -O3, the same implementations are the slowest (by 2.4%).
  • Most common release builds are still done with -O2 these days. For those, using initializer lists (A1/A2/A3) seem too have a significant edge over the alternatives, whether constructors are inlined or not. This is in contrast to the conclusions made from “constructor counting”, which assumed these to be slow because of additional calls needed.
  • The numbers printed in bold are either the quickest implementation in a build scenario or one that is within 1.5% of the quickest implementation. A1 and A2 are sharing the title here by being in that group five times each.
  • With constructors inlined, everything in the loop except DoSomething() could be inline. It seems to me that the compiler could — at least in theory — figure out that it is asked the same thing in all cases. Namely, reserve space for three ints on the heap, fill them each with 4711 and make the ::std::vector<int> data structure on the stack reflect that, then hand that to the DoSomething() function that you know nothing about. If the compiler would figure that out, it would take the same time for all implementations. This doesnt happen either on -O2 (differ by ~18% from quickest to slowest) nor on -O3 (differ by ~3.6%).

One common mantra in applications development is “trust the compiler to optimize”. The above observations show a few cracks in the foundations of that, esp. if you take into account that this is all on the same version of the same compiler running on the same platform and hardware with the same STL implementation. For huge objects with expensive constructors, the constructor counting approach might still be valid. Then again, those are rarely statically initialized as a bigger bunch into a vector. For the more common scenario of smaller objects with cheap constructors, my tentative conclusion so far would be to go with A1/A2/A3 — not so much because they are quickest in the most common build scenarios on my platform, but rather because the readability of them is a value on its own while the performance picture is muddy at best.

And hey, if you want to run the tests above on other platforms or compilers, I would be interested in results!

Note: I did these runs for each scenario only once, thus no standard deviation is given. In general, they seemed to be rather stable, but this being wallclock measurements, one or the other might be outliers. caveat emptor.

SwNodeIndex: Ludicious Speed

No-no-no, light speed is too slow!
Yes, we’ll have to go right to… ludicrous speed!

— Dark Helmet, Spaceballs

So, I recently brought up the topic of writers notes in the LibreOffice ESC call. More specifically: the SwNodeIndex class, which is, if one broadly simplifies an iterator over the container holding all the paragraphs of a text document. Before my modifications, the SwNodes container class had all these SwNodeIndices in a homegrown intrustive double linked list, to be able to ensure these stay valid e.g. if a SwNode gets deleted/removed. Still — as usual with performance topics — wild guesses arent helpful, and measurements should trump over intuition. I used valgrind for that, and measured the number of instructions needed for loading the ODF spec. Since I did the same years and years ago on the old OpenOffice.org performance project, I just checked if we regressed against that. Its comforting that we did not at all — we were much faster, but that measurement has to be taken with a few pounds of salt, as a lot of other things differ between these two measurements (e.g. we now have a completely new build system, compiler versions etc.). But its good we are moving in the right direction.

implementation SwNodes SwNodeIndex total instructions performance linedelta
DEV300_m45 71,727,655 73,784,052 9,823,158,471 ? ?
master@fc93c17a 84,553,232 60,987,760 6,170,762,825 0% 0
std::list 18,461,317 103,461,317 14,502,230,571 -5,725%
(-235% of total)
+12/-70
std::vector 18,986,848 3,707,286,032 9,811,541,380 -2,502% +22/-70
std::unordered_map 18,984,984 82,843,000 7,083,620,244 -627%
(-15% of total)
+16/-70
std::vector rbegin 18,986,848 143,851,229 6,214,602,532 -30%
(-7% of total)
+23/-70
sw::Ring<> 23,447,256 inlined 6,154,660,709 11%
(2.6% of total)
+108/-229

With that comforting knowledge, I started to play around with the code. The first thing I did was to replace the handcrafted intrusive list with a std::list pointing to the SwNodeIndex instances as a member in the SwNodes class. This is expected to slow down things, as now two allocs are needed: one for the SwNodeIndex class and one for the node entry in the std::list. To be honest though, I didnt expect this to slow down the code handling the nodes by a factor of ~57 for the loading of the example document. This whole document loading time (not just the node handling) slows by a factor of ~2.4. So ok, this establishes for certain that this part of the code is highly performance sensitive.

The next thing I tried to get a feel for how the performance reacts was using a std::vector in the SwNodes class. When reserving some memory early, this should severely reduce the amount of allocs needed. And indeed this was quicker than the std::list even with a naive approach just doing a push_back() for insertion and a std::find()/std::erase() for removal. However, the node indices are often temporarily created and quickly destroyed again. Thus adding new indices at the end and searching from the start certainly is not ideal: Thus this is also slower than the intrusive list that was on master by a factor of ~25 for the code doing the node handling.

Searching for a SwNodeIndex from the end of the vector, where we likely just inserted it and then swapping it with the last entry makes the std::vector almost compatitive with the original implementation: but still 30% slower than the original implementation. (The total loading time would only have increased by 0.7% using the vector like this.)

For completeness, I also had a look at a std::unordered_map. It did a bit better than I expected, but still would have slowed down loading by 15% for the example experiment.

Having ruled out that standard containers would do much good here without lots of tweaking, I tried the sw::Ring<> class that I recently rewrote based on Boost.Intrusive as a inline header class. This was 11% quicker than the old implementation, resulting in 2.6% quicker loading for the whole document. Not exactly a heroic archivement, but also not too bad for just some 200 lines touched. So this is now on master.

Why do this linked list outperform the old linked list? Inlining. Especially, the non-inlined constructors and the destructor calling a trivial non-inlined member function. And on top of that, the contructors and the function called by the destructor called two non-inlined friend functions from a different compilation unit, making it extra hard for a compiler to optimize that. Now, link time optimization (LTO) could maybe do something about that someday. However, with LTO being in different states on different platforms and with developers possibly building without LTO for build time performance for some time, requiring the compiler/linker to be extra clever might be a mixed blessing: The developers might run into “the map is not the territory” problems.

my personal take-aways:

  • The SwNodeIndex has quite a relevant impact on performance. If you touch it, handle with care (and with valgrind).
  • The current code has decent performance, further improvement likely need deeper structual work (see e.g. Kendys bplustree stuff).
  • Intrusive linked lists might be cumbersome, but for some scenarios, they are really fast.
  • Inlining can really help (doh).
  • LTO might help someday (or not).
  • friend declarations for non-inline functions across compilation units can be a code smell for possible performance optimization.

Please excuse the extensive writing for a meager 2.6% performance improvement — the intention is to avoid somebody (including me) to redo some or all of the work above just to come to the same conclusion.


Note: Here is how this was measured:

  • gcc 4.8.3
  • boost 1.55.0
  • test document: ODF spec
  • valgrind --tool=callgrind "--toggle-collect=*LoadOwnFormat*" --callgrind-out-file=somefilename.cg ./instdir/program/soffice.bin
  • ./autogen.sh --disable-gnome-vfs --disable-odk --disable-postgresql-sdbc --disable-report-builder --disable-scripting-beanshell --enable-gio --enable-symbols --with-external-tar=... --with-junit=... --with-hamcrest=... --with-system-libs --without-doxygen --without-help --without-myspell-dicts --without-system-libmwaw --without-system-mdds --without-system-orcus --without-system-sane --without-system-vigra --without-system-libodfgen --without-system-libcmis --disable-firebird-sdbc --without-system-libebook --without-system-libetonyek --without-system-libfreehand --without-system-libabw --disable-gnome-vfs --without-system-glm --without-system-glew --without-system-librevenge --without-system-libcdr --without-system-libmspub --without-system-libvisio --without-system-libwpd --without-system-libwps --without-system-libwpg --without-system-libgltf --without-system-libpagemaker --without-system-coinmp --with-jdk-home=...

Auld Lang Syne

we’ll tak’ a cup o’ kindness yet,
for auld lang syne.

— Die Roten Rosen, Auld Lang Syne

Eike already greeted the Year of Our Lady of Discord 3181 four days ago, but I’d like to take this opportunity to have a look at the state of the LibreOffice project — the bug tracker status that is.

By the end of 2014:

unconfirmed

And a special “Thank You!” goes out to everyone who created one of the over 100 Easy Hacks written for LibreOffice in 2014, and everyone who helped, mentored or reviewed patches by new contributors to the LibreOffice project. Easy Hacks are a good way someone curious about the code of LibreOffice to get started in the project with the help of more experienced developers. If you are interested in that, you find more information on Easy Hacks on the TDF wiki. Note that there are also Easy Hacks about Design related topics and on topics related to QA.

If “I should contribute to LibreOffice once in 2015″ wasnt part of your new years resolutions yet, you are invited to add this as Easy Hacks might convince you that its worthwhile and … easy.

To Win in Toulouse

Now the only thing a gambler needs
Is a suitcase and a trunk.
— Animals, The House of the Rising Sun

So, as many others, I have been to the LibreOffice Hackfest in Toulouse which — unlike many of our other Hackfests — was part of a bigger event: Capitole du Libre. As we had our own area and were not 30+ hackers, this also had the advantage that we got quicker to work. And while I had still some boring administrative work to do, this is a Hackfest were I actually got to do some coding. I looked for some bookmark related bugs in Writer, but the first bugs I looked at were just too well suited to be Easy Hacks: fdo#51741 (“Deleting bookmark is not seen as modification of document”) and fdo#56116 (“Names of bookmarks should allow all characters which are valid in HTML anchor names (missing: ‘:’ and ‘.’)”). Both were made Easy Hacks and both are fixed on master now. I then fixed fdo#85542 (“DOCX import of overlapping bookmarks”), which proved slightly more work then expected and provided a unittest for it to never come back. I later learned that the second part was entirely nonoptional, as Markus promised he would not have let me leave Toulouse without writing a unittest for commited code. I have to admit that that is a supportable position.

Toulouse Hackfest Room

Toulouse Hackfest Room

Scenes like the above were actually rather rare as we were mostly working over our notebooks. One thing I came up with at the Hackfest, but didnt finish there was some clang plugins for finding cascading conditional ops and and conditional ops that have assignments as a sideeffect in their midst. While I found nothing as mindboggling as the tweet that gave inspiration to these plugins in sw (Writer), I found some impressive expressions that certainly wouldnt be a joy to step through in gdb (or even better: set a breakpoint in) when debugging and fixed those. We probably could make a few EasyHacks out of what these (or similar) plugins find outside of sw/ (I only looked there for now) — those are reasonably easy to refactor, but you dont want to do that in the middle of a debugging session. While at it, I also looked at clangs “value assigned, but never read” hints. Most were harmless, but also trivial to get rid of. On the other hand, some of those pointed to real logic errors that are otherwise hard to see. Like this one, which has been hiding — if git is to be believed — in plain sight ever since OpenOffice.org was originally open sourced in 2000. All in all, this experience is encouraging. Now that there are our coverity defect density is a just a rounding error above zero getting more fancy clang plugins might be promising.

Just one week after the Hackfest in Toulouse, there was another event LibreOffice took part in: The Bug Squashing Party in Munich — its encouraging to see Jonathan Riddell being a commiter to LibreOffice too now, but that is not all, we have more events coming up: The Document Foundation and LibreOffice will have an assembly at 31c3 in Hamburg, you are most welcome to drop by there! And next then, there will be FOSDEM 2015 in Bruessels, where LibreOffice will be present as usual.

Follow

Get every new post delivered to your Inbox.